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Abstract-—Variational expressions developed over the last few years provide bounds for the overall
energy functions of a range of nonlincar composite materials. The evaluation of a bound requires
the solution of a system of nonlinear algebraic equations and this generally involves a computation.
There are, however, certain simple composites, comprising a nonlincar matrix containing either
rigid inclusions or cavities, for which very simple explicit formulae can be given. These formulac
are displayed here, at a level of generality greater than in any previous presentation. The energy
density function of the matrix is arbitrary and the microgeometry of the composite appears through
an expression which bounds the energy of a linear composite with the same geometry. To the extent
that such hncar bounds can be developed making allowance for any amount of statistical information
on the composite, the new noalinear bounds reflect this. New results, at the level of employing
bounds of Hashin Shirikman type for the lincar problem, are given for an incompressible matrix
reinforeed hy aligned rigid platelots or weakened by aligned cracks. In the course of the work, a
recently-derived formula, more general than any available previously, is presented and developed
explicitly Tor any two-phuse composite.

L. INTRODUCTION

The problem to be addressed is that of bounding (when possible) the overall, or effective,
energy density function of a composite, made up from materials of n different types, firmly
bonded across interfaces. Material of type r has encrgy density function W,(e), which is
taken to be a convex function of the infinitesimal strain tensor ¢. The energy density function
for the composite depends on position x and cun be written

Wi(e x) = }n: W,(e) f.(x), (n

ra |

where f.(x) represents the characteristic function of the region occupied by material of type
r. The composite occupics a domain Q and, for convenicnce, units of length are chosen so
that © has unit volume. The overall cnergy function, W(é), is then defined as the mean
energy density, when the composite is subjected to @ mean strain é, through application of
the displacement boundary conditions

u, =é,x, xedQ. (2)

The minimum cnergy principle allows # to be characterized as
Wi(é) = inf f Wie. x)dx, 3
“ Q

the infimum being taken over strain ficlds e that are derived from displacements conforming
to the boundary conditions (2).
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The same mathematics applies to problems involving steady-state creep. Then. u is
interpreted as velocity. e as strain rate and the energy density functions are interpreted as
stress potentials.

The ideas that are employed in this work stem from a generalization to nonlinear
problems of the Hashin-Shtrikman variational principle {Hashin and Shtrikman. 1962,
1963). developed in Willis (1983, 1986) and Talbot and Willis (1983). In general. explicit
results require a computation ; the most extensive study to date is that reported in Dendievel
et al. (1991) for the overall creep behaviour of a polverystal. There are. however, certain
configurations. of some practical interest, for which bounds can be given in simple closed
forms. It is the purpose of this note to place these bounds on record. An additional novel
feature of the work is that a general bound expression is given, which can make allowance
for statistical information of any order: the germ of the idea was exposed in Willis (1991a)
but here it is developed and simplified in the case of any two-phase composite, and given
yet more explicit forms in the cases of a matrix containing cither rigid inclusions or cavities.

2. THE BASIC VARIATIONAL STRUCTURE

The energy density function of the composite depends on position v and corresponds
to nonlinear material behaviour: the exact value of I, defined in (3), is correspondingly
hard to find. It proves fruitful to introduce a “comparison”™ material, with energy density
Wy(e). and to define

(W= Wa)*(1) = sup[r-e = (W = Wy)(e)]. H

Here, the dependence of W on x is not acknowledged explicitly but it is still present. Then,
Wie) z Wale)+ e~ (W~ W) (5)

for any e, r and it follows, rom (3) and (5}, that

W) = inff [Wo(e) + 1 e— (W= IW,)*(n)] dx. (6)

2

the infimum stilt being over the set of strain ficlds that are admissible for (3). The incquality
(6) embodics the variational principle of Hashin and Shtrikman (1962), generalized to
nonlinear material behaviour,

The function W, is usually taken to be quadratic, corresponding to lincar material
behaviour, and independent of x. Neither of these are essential, however. Suppose now that
W, is taken, instead, to be a comparison linear composite, with the same microgeometry as
the given nonlinear composite : to distinguish this from the more usual case, the comparison
energy function is now called W. Then, (6) yiclds the bound

(@) = sup {inrj (W) +oee—(W=H)*(0)] d-v}- D
W ¢

This bound. as well as (6). is simple cnough to be useful if t is taken to have the piecewise
constant form

”

t(x) = Y 1, fi(x). (8)

r=1

in correspondence with the expression (1) for (e, x). Then, awkward nonlinear averages
are avoided.
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When t has the form (8). the problem of finding
Weé.r) = infj [W(e)+1-¢]dx 9)
¢ 1

is analogous to finding the energy of a linear thermoelastic composite : call the temperature
1, let the thermal stress tensor be —t and suppose the heat capacity at constant strain is
zero.

A simple consequence of (7) is obtained by setting r = 0. This gives

W(é) > sup {Ws(é).;-j min (W — W) dx}. (10)
# 4]

where W, is any lower bound to the overall energy function of the linear comparison
composite. This bound was introduced by Ponte Castarieda (1991). Generally, this bound
is not as good as (7). but it can be in particular cases. The idea of employing a comparison
linear composite was introduced in Ponte Castafieda (1991) and, in a somewhat different
context. in Dendievel ef al. (1991). The relative merits of (10) and (6) have been discussed
in Willis (1991, in press).

It should be noted that the bounds (6). (7) and (10) are nontrivial only so long as
(W= Wy)* or (W—W)*is finitc ; considering the former quantity, this requires that

(W—=Wle) el =+ as el = 0.
I, alternatively,
(W= wh@)lal = +o as Jof - %,
an exactly similar formulation starting from the complementary energy principle provides

bounds for

W*(&) = inf J W*(a)dx, an
i 3

¢

the infimum being taken over divergence-free fields o with prescribed mean value . There
are also cases for which one of these conditions is satisfied for some values of x, while the
other condition is satisfied elsewhere ; no bounds are then known, apart from the elementary
ones which follow directly by substitution of constant fields into the integrals in (3), (10),
to yield

(W*)*(&) < W) < W(@). (12)
Here,

n

W@ = j W x)yde= Y . W,(@.
93

rel

where ¢, denotes the volume fraction of material of type r, and W*(4) is defined similarly.

3. A TWO-PHASE COMPOSITE

In the particular case of a two-phase composite, the “linear thermoelastic™ problem
(9) can be solved explicitly, in terms of the corresponding purely mechanical problem
(Levin, 1967; Laws, 1973). Introduce the notation
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Wite) = leLie. Wye) = leLse. (13)

The comparison linear composite then has tensor of overall moduli L. say. and corre-
sponding energy function

W@ = lele. (14)
Manipulation of formulue given in Levin (1967) and Laws (1973) then yields
W’T(f?l 7)) = %5[&74-51:— %[L7+(L| —Ly)" ](1'1 —T:)]([—[)[5+(L| —~L-)" l(_fl —1)]. (19

A lower bound is obtained by replacing L by any lower bound L, in (135): the bound
formula (7) then becomes explicit.

4. A NONLINEAR MATRIX CONTAINING RIGID INCLUSIONS OR CAVITIES

Let the matrix have energy function H,(¢) and let phase 2 be rigid. The lincar
comparison composite is similarly defined by a tensor of moduli L. while L, = x. The
expression (15) simplifies drastically and the bound corresponding to (7) becomes

W,(E) 2 Slllp sup [5(-'LII(:+(7rI = (W - lf/l)*(rl)].

or, upon cvitfuating the supremum over 1,

W) = sup [ﬁ(’l,,,¢’+(~,(lk’, - li])"‘*( ¢ )] (16)
~ . by ¢y

Here, Ly is any lower bound for L. The bound formula (16) is the most general that 1s known
for this type of composite : no assumption such as isotropy has been made, cither in relation
to material behaviour or microgeometry. It is free of the deficiency of (10). noted in Willis
(1991c¢), that the bound need not always be as good as the older bound, (6). When Ly is
taken as the Hashin-Shtrikman bound, (16) can also be derived directly from (6), identifying
W, with W,. This direct derivation was given in Willis (1991b).

For a matrix weakened by cavities, the formula corresponding to (16) follows from
the dual formulation based on (11). The result 1s

W*(d) > sup [§6MB5+¢~.(W=,~— W’f)**("—)], (17

&
where Ms denote compliance tensors, inverse to the corresponding Ls.
5. SOME SPECIAL CASES
The formulac listed below were all derived by making the replacements

(W, — W )* = min (W, = W,), (W= #** = min(W}- 7). (18)
The bounds that result are thus based on (10) and are only as good as bounds based on (7)
when the replacements listed above have no adverse effect. This is often the case in practice
conditions arc discussed in Willis (1991b, in press).
(a) Rigid inclusions in an incompressible matrix

Here, the linear bound L, can be any bound for an isotropic incompressible matrix.
with shear modulus ji,, containing rigid inclusions. It has the form
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l;n = [i[l;. ( ]9)

say. where the tensor B depends on the geometrical arrangement only. Having made the
replacement (18). 4, appears linearly and the required saddle point follows directly. The
bound is

W(é) = min ¢, W,(e). (20)

where ¢ is restricted so that its associated equivalent shear strain has the value

éBé
2 . 2
e 3, 20

An expression of Hashin-Shtrikman type for B is known, for any microgeometry,
from work of Willis (1981, 1982). For a linear matrix with general tensor of moduli L,

¢;
L3=L|+Z":P_I. (22)
t

where P is a tensor which depends on points in the composite, taken two at a time. In the
special case that the composite has a “spheroidal” symmetry, which can be thought of as
having been realized by subjecting a composite with isotropic microgeometry to a stretch
in one direction, the tensor P is known explicitly (see Willis (1977) for the first proofl) ; one
source for the detailed formulae, in the case of isotropic L, is Willis (1990). When B is
obtained from a Hashin-Shtrikman bound, the following results may be derived, as special
cases of a composite with spheroidal symmetry.

Spherical rigid inclusions. The bound is (20), subject to the restriction

5 (2‘*‘3(-’2)_, 23

el =~ e, 2
i 2¢, ¢ (23)

Aligned platelets, radius a, number density n.
W(&) > min W (e), (24)
where
v .y 3md3 L -

e, =&, + 57 i(t‘ft'*"’:':)‘*ent’::‘*“‘i’i: . (25)

(b) Rigid spheres in a compressible matrix
Here, the lincar Hashin-Shtrikman bound is used and the matrix is taken to have
energy function

Wile) = Ixien+ W(e,). (26)
The bound is

- gh'l 3 Sl\f;[.‘g Cr _,
W) 2 ot g2 22100 T252 W (e 3
(() = ZC‘ en+ 2(&'. +2ﬂ0)2 e é; 4y ,((,). (..7)

where

SAS 29:14/18-T
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Wite) N
’ e, (=8)
and
s | S 3k +4u 28, 1 dc, _,
cel = [ (_' o Tk :>+l} r (29)
6c) \ K1+ 2u, (k1 +2uy) (&

This result still requires the solution of the nonlinear equation (29) and demonstrates how
rapidly complications can set in.

(c) Carities in an incompressible matrix
Here, the linear bound for the compliance tensor of the comparison composite (which
contains cavities) has the form

My = B*/4i,. (30)
The bound is
W) = min ¢, Wi(o). 31
where ¢ is restricted so that
o0} = 3GB*q. (32)

The lincar Hashin-Shtrikman bound can be given in the form

My=M+70". (33)

€y

Q=L —-LPL, (34)

and so is known explicitly when the matrix is isotropic and the composite has spheroidal
symmetry. When this is employed, there are the following results.

Spherical cavities. The restriction (32) becomes

ot = 2}“. i+ (3";“[“>53. (35)
Aligned cracks, radius a, number density n.
W*(3) = min (o), (36)
where
2= Gl +dna’ (Y6} +63) +61] (37)

6. CONCLUDING REMARKS

The formulations given in Section 2 arc the only ones known for the systematic
production of bounds more refined than the elementary bounds (12). In particular, the
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result (7) is the best that is known. The general two-phase bounds obtained by combining
(7). (9) and (15) have not been presented before. The bounds (16) and (17) are likewise
new. They cannot easily be simplified for general energy function ¥, but, when the replace-
ments (18) are acceptable. very simple explicit formulae result. They follow from Ponte
Castafieda’s bound formula (10) but have not been obtained at this level of generality
before. Even at the level of employing linear bounds of Hashin—-Shtrikman type, the
expressions (24) and (37). for a matrix containing rigid platelets or cracks, have not been
given previously. Limitations of space preclude the presentation of results for further special
cases; the ones that have been given were selected for their particular simplicity. It is
remarked. however, that other results. such as for a nonlinear matrix reinforced by linear
fibres (Talbot and Willis. 1991). have been reproduced from the present style of reasoning.
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