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SOME SIMPLE EXPLICIT BOUNDS FOR THE
OVERALL BEHAVIOUR OF NONLINEAR COMPOSITES
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and
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,\bstrllct-Variation'll e~pn:ssions devclllped over the last few years provide bounds for the overall
energy functions of a range of nonlinear composite materials. The evalu'ltion of a bound requires
the solution of'l system of nonlinear algebraic equations and this generally involves a computation.
There arc. however. certain simpk composites. comprising a nonlinear matrilt containing either
rigid inclusil'ns or cavities. for which very simple e~plicit formulae C.1n be given. These formulae
are displayed here. at a level of generality greater than in any previous presentation. The energy
density function Ill' the matri~ is arhitrary ,lOd the microgeometry of the composite appears through
an e~pression which hounds the energy of a linear composite with the same geometry. To the clttcnt
that such linear bounds can he developed m,lking allowance for any amount ofstatistical information
Iln the cI,mposite. the new nl>nlinc.lr hl'unds relkct this. New results. at the level of employing
hounds of lIaslnn Shtrikman type for the linear prohlem. arc given for an incompressible matrilt
reinforced by aligned rigid platelets I,r weakened hy illign~-d crilcks. In tbe course of the work. a
recently·derived formula. nlllre gencralthan any available previously. is presented ;tllli developed
cltplidtly for ,IllY two·phasc compositc.

I. INTRODUCTION

The prohlem to he addressed is Ihat of hounding (when possible) the overall. or effective.
energy density function of a composile. made up from materials of n different types. firmly
bonded across interfaces. M'lterial of type r has energy density function W,(e). which is
taken to be a convex function of the infinitesim<tl strain tensor e. The energy density function
for the composite depends on position x and Can be written

n

Wee. x) =:: 2: W,(e)J,(x).
,~ I

(I)

where J,(x) represents the characteristic function of the region occupied by material of type
r. The composite occupies a domain n and. for convenience. units of length are chosen so
that n has unit volume. The overall energy function. Wee). is then defined as the mean
energy density. when the composite is subjected to a mean strain e. through ~Ipplicationof
the displacement boundary conditions

The minimum energy principle allows fT- to be characterized as

JV«(') =:: inf r Wee. x) dx... In

(2)

(3)

the infimum being taken over strain fields e that are derived from displacements conforming
to the boundary conditions (2).
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The same mathematics applies to problems involving steady-state creep. Then. u is
interpreted as velocity. e as strain rate and the energy density functions are interpreted as
stress potentials.

The ideas that are employed in this work stem from a generalization to nonlinear
problems of the Hashin-Shtrikman variational principle (Hashin and Shtrikman. 1962.
1963). developed in Willis (1983.1986) and Talbot and Willis (1985). In general. explicit
results require a computation; the most extensive study to date is that reported in Dendievel
et al. (1991) for the overall creep behaviour of a polycrystal. There are. however. certain
configurations. of some practical interest. for which bounds can be given in simple closed
forms. It is the purpose of this note to place these bounds on record. An additional novel
feature of the work is that a general bound expression is given. which can make allowance
for statistical information of any order: the germ of the idea was exposed in \Villis ( 1991 a)
but here it is developed and simplified in the case of any two-phase composite. and given
yet more explicit forms in the cases of a matrix containing either rigid inclusions or cavities.

2. THE BASIC VARIATIO~AI. STRUCTURE

The energy density function of the composite depends on position x and corresponds
to nonlinear material behaviour; the exact value of If'. ddlned in (3). is correspondingly
hard to tind. It proves fruitful to introduce a "comparison" material. with energy density
Wok). and to define

(4)

Here. the dependence of Won X is not acknowledged explicitly hut it is still present. Then.

(5)

for any c. r and it follows. from (3) and (5). that

(6)

the infimum still being over the set of strain fields that are admissible for (3). The inequality
(6) embodies the variational principle of Hashin and Shtrikman (1962). generalized to
nonlinear material behaviour.

The function Wo is usually taken to be quadratic. corresponding to linear material
behaviour. and independent of x. Neither of these arc essential. however. Suppose now that
WI) is taken. instead. to be a comparisol/ IiI/ear composite. with the same microgeometry as
the given nonlinear composite: to distinguish this from the mon.: usual case. the comparison
energy function is now called ~V. Then. (6) yields the bound

(7)

This bound. as well as (6). is simple enough to be useful if r is taken to have the piecewise
constant form

n

r(x) = L r,J;(x).
,. I

(8)

in correspondence with the expression (I) for ~V(e. x). Then. awkward nonlinear averages
arc avoided.
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When r has the form (8), the problem of finding

a'T(e; r) = inf r [Wee) +r' e] dx
t Jo

t983

(9)

is analogous to finding the energy of a linear thermoelastic composite: call the temperature
I. let the thermal stress tensor be - r and suppose the heat capacity at constant strain is
zero.

A simple consequence of (7) is obtained by setting r = O. This gives

(10)

where fVs is any lower bound to the ol'erall energy function of the linear comparison
composite. This bound was introduced by Ponte Castaneda (1991). Generally. this bound
is not as good as (7). but it can be in particular cases. The idea of employing a comparison
linear composite was introduced in Ponte Castaneda (1991) and, in a somewhat different
context. in Dendievel et al. (1991). The relative merits of (10) and (6) have been discussed
in Willis (1991. in press).

It should be noted that the bounds (6), (7) and (10) are nontrivial only so long as
(W - Wo)* or (W - fV)'" is finite; considering the former quantity, this requires that

(W-Wo)(e)/Ilcll-++co as lIell ..... oo.

If, alternatively.

an exactly similar formulation sturting from the complementary energy principle provides
bounds for

w*(a) = inf r W*(cr) dx," Ju (II)

the infimum being tuken over divergence-free fields cr with prescribed mean value a. There
are also cases for which one of these conditions is sutisfied for some values of x, while the
other condition is sutisfied elsewhere; no bounds are then known, apart from the elementary
ones which follow directly by substitution of constant fields into the integrals in (3), (10),
to yield

(12)

Here,

fV(e) = r W(e,x)dx= ±c,W,(e),Jo ,-I

where c, dcnotcs the volume fraction of matcrial of typc r, and JV*(q) is defined similarly.

J. A TWO·PHASE COMPOSITE

In thc particular case of a two-phasc composite. the "linear thermoelastic" problem
(9) can be solved explicitly, in terms of the corresponding purely mechanical problem
(Levin, 1967; Laws, 1973). Introduce the notation
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( 13)

The comparison linear composite then has tensor of overall moduli l. say. and corre
sponding energy function

( 14)

Manipulation of formulae given in Levin ( (967) and Laws (1973) then yields

A lower bound is obtained by replacing [ by any lower bound L B in (15): the bound
formula (7) then becomes explicit.

4. A I\O:--;UNEAR MATRIX CONTAINING RIGID INCLUSIONS OR CAVITIES

Let the matrix have energy function WI(e) and let phase 2 be rigid. The linear
comparison composite is similarly defined by a tensor of moduli L 1• while L z -+ x. The
expression (15) simplifies drastically and the bound corresponding to (7) becomes

or, upon evaluating the supremum over rl'

(16)

Here, L II is any lower bound for E. The bound formula (16) is the most general that is known
for this type ofcomposite: no assumption such as isotropy has been made, either in relation
to material behaviour or microgeometry. It is free of the deficiency of (10), noted in Willis
(IYYIc), that the bound need not always be as good as the older bound, (6). When L Il is
taken as the Hashin-Shtrikman bound, (16) can also be derived directly from (6), identifying
Wn with ~VI' This direct derivation was given in Willis (1991b).

For a matrix weakened by cavities, the formula corresponding to (16) follows from
the dual formulation based on (11). The result is

( 17)

where Ms denote compliance tensors, inverse to the corresponding Ls.

5. SOME SPECIAL CASES

The formulae listed below were all derived by making the replacements

The bounds that result arc thus based on (10) and arc only as good as bounds based on (7)
when the replacements listed above have no adverse effect. This is often the case in practice:
conditions arc discussed in Willis (1991 b, in press).

(a) Rigid inclusions in an incompre.uihle matrix
Here, the linear bound L" can be allY bound for an isotropic incompressible matrix.

with shear modulus til, containing rigid inclusions. It has the form
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(19)

say. where the tensor B depends on the geometrical arrangement only. Having made the
replacement (18). PI appears linearly and the required saddle point follows directly. The
bound is

~V(e) ~ min CI WI(e).
•

where e is restricted so that its associated equivalent shear strain has the value

(20)

(21 )

An expression of Hashin-Shtrikman type for B is known. for any microgeometry.
from work of Willis (1981. 1982). For a linear matrix with general tensor of moduli L 1-

C,
LB = L I + . P - I •

CI
(22)

where P is a tensor which depends on points in the composite. taken two at a time. In the
special case that the composite has a "spheroidal" symmetry. which can be thought of as
having been realized by subjecting a composite with isotropic microgeometry to a stretch
in one direction. the tensor P is known explicitly (see Willis (1977) for the first proof) ; one
source for the detailed formulae. in the case of isotropic L I • is Willis (1990). When B is
obtained from a Hashin-Shtrikman bound. the following results may be derived. as special
cases of a composite with spheroidal symmetry.

Spherical r~qicl inclusions. The bound is (20), subject to the restriction

(23)

Aligned platelets. radius a, number density n.

(24)

where

(25)

(b) Rigid spheres in a compressible matrix
Here. the linear Hashin-Shtrikman bound is used and the matrix is taken to have

energy function

(26)

The bound is

(27)

where
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(28)

(29)

This result still requires the solution of the nonlinear equation (29) and demonstrates how
rapidly complications can set in.

(c) Carities in an incompressible matrix
Here. the linear bound for the compliance tensor of the comparison composite (which

contains cavities) has the form

The bound is

~t··(a) ~ min CI Wr(a).
"

where a is restricted so that

The linear Hashin·Shtrikman bound can be given in the form

C1 _ ,
,H II =lv[,+ Q

(',

where

(30)

(31 )

(32)

(3)

(34)

and so is known explicitly when the matrix is isotropic and the composite has spheroidal
symmetry. When this is employed. there are the following results.

Spherical cavities. The restriction (32) becomes

Aligned cracks. radius a. numher density n.

~ji·(a) ~ min Wr(a).
"

where

(35)

(36)

(37)

6. CONCLUDING REMARKS

The formulations given in Section 2 are the only ones known for the systematic
production of bounds more refined than the elementary bounds (12). In particular. the
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result (7) is the best that is known. The general two-phase bounds obtained by combining
(7). (9) and (15) have not been presented before. The bounds (16) and (17) are likewise
new. They cannot easily be simplified for general energy function WI but. when the replace
ments (18) are acceptable. very simple explicit formulae result. They follow from Ponte
Castaneda's bound formula (10) but have not been obtained at this level of generality
before. Even at the level of employing linear bounds of Hashin-Shtrikman type. the
expressions (24) and (37). for a matrix containing rigid platelets or cracks. have not been
given previously. Limitations ofspace preclude the presentation of results for further special
cases; the ones that have been given were selected for their particular simplicity. It is
remarked. however. that other results. such as for a nonlinear matrix reinforced by linear
fibres (Talbot and Willis. 1991). have been reproduced from the present style of reasoning.
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